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1. INTRODUCTION

In this paper we consider the problem of finding the optimal approximation
to a linear functional F in terms ofa given set of other functionals, F1 , ••• , F n •

We shall assume that these functionals are defined on a class of real-valued
functions of two real variables having properties similar to the space of func
tions Bp,q(LX, (3) discussed by Sard [21, Chap. 4]. We shall call this class of
functions YM(CX, (3). In Section 4, we give a precise definition of TM (ex:, {3)
and introduce an inner product which makes f a member of a Hilbert space
with a reproducing kernel. We shall only consider linear functionals which
are bounded with respect to the norm on the Hilbert space and for
which Sard's kernel theorem [21, p. 175] holds. By the optimal approximation
we shall mean the 1inear combination of the F i which minimizes the norm of
the error functional R.

As we shall show in Section 2, the optimal approximation and error bounds
can be found if the representers of the functionals involved are known. The
representers can be determined if one knows the reproducing kernel for the
space. The principal result of this paper is the construction of the reproducing
kernel for a Hilbert space of functions in YM(a', (3). We then apply this result
to the problem of finding the optimal approximation to a definite integral
by a cubature sum. In Section 6 some numerical examples related to approxi
mate multiple integration are given.

The results of this paper are related to the theory of bivariate spline
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functions in that the optimal approximations are splines, i.e., they are piece
wise polynomials. These splines differ from the bivariate splines of Ahlberg,
Nilson, and Walsh [1,3] in that the points of interpolation are not restricted
to a rectangular grid. Also the splines in this paper are of total degree 2m - 1
rather than being,of odd degree in each variable.

For functions of one variable, the problem of optimal approximation
has been studied extensively. References are given below. Let plk'l[a, b] =
{f Il(i~-ll abs cont, pkl E L2[a, b]}. If the functionals F;, i = 1,..., n have
the property that k of them are linearly independent over 7Tk-1 , the set of
polynomials of degree less than or equal to k - 1, FU')[a, b] is a Hilbert
space with respect to the norm

b k

II V 112 = J [v(k')(x)]2 dx + L [F;(V)]2.
a ;=1

de Boor and Lynch [12] and Golomb and Weinberger [15] have calculated
the reproducing kernel for FU"[a, b] with respect to this norm. IfF;(f) = lex;),
i = 1,... , n, the optimal approximation is the natural polynomial spline
(type II' spline in the terminology of Ahlberg, Nilson, and Walsh) of degree
2k - 1 which interpolates 1 at the points x;, i = 1,... , n. The connection
between splines and the optimal approximation of functionals was first
pointed out by Schoenberg [23]. Related results have been obtained by
Secrest [27-29], who pointed out the connection between splines and the
optimal approximations of Golomb and Weinberger [15], and by Ahlberg
and Nilson [2] and Schoenberg [25].

2. REPRESENTERS IN HILBERT SPACE AND

THE OPTIMAL ApPROXIMATION OF LINEAR FUNCTIONALS

Let H be a real Hilbert space. Let F be a bounded linear functional on H.
We wish to approximate F by a sum 2::=1 A;F; where the F; are a given set
of bounded linear functionals with representers <p;. Golomb and Weinberger
[15] and de Boor and Lynch [12] show that the optimal approximation
P(f) to F at 1 equals F(u) where u is the element of the Hilbert space of
minimum norm among all elements interpolating 1 with respect to the
F; , i = 1,... , n. Then u can also be characterized [12] as the element of the
subspace S = <<p;, i = 1,... , n) which interpolates 1 with respect to the
F; , i = 1,... , n.

Optimal error bounds can be obtained from the hypercirc1e inequality

IF(f) - F(u) I ~ [I R II [r2 - (u, U)]1/2, (2.1)

where R is the optimal error functional and r2 ~ 11/112• Let <p be the representer
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(3.I}

of the functional F. Then II R II = 111> - I:~~I A;*1>i:1 where the A;* are the
optimal weights. Let ¢ = 1> - I:~l Ai*epi' It is shown In [12] that
F;(¢) = 0, i = 1,..., n. Thus

II R 11
2 = (¢, ¢) = R(¢) = F(¢). (22)

Therefore the optimal approximation and error bounds can be calculated
if the functions ¢ and Ii can be found. Assume H has the reproducing kernel
K(X, Y). If L is a bounded linear functional and h is its representer then
heX) = LyK(X, Y), where the subscript Y means that L operates on K(X, Y)
as a function of Y. Thus ¢ and Ii can be calculated directly from the repro
ducing kernel.

3. CONSTRUCTION OF THE REPRODUCING KERNEL FOR THE HILBERT SPACE T~;,~j

For p ~ 1, let p<P)[a, b] = {g I glP-I)abs cant, glP) E L2[a, b]}. Let ex be
an arbitrary point in [a, b] and let Pi be the linear projection defined by

(x - ex)ip.g = a(i)(ex) .
z 0 / i! .

Then Pi = Lj<i Pj is also a linear projection, i = 0, 1,2,....
For all functions g EFlP)[a, b] we have the Taylor series representation

p-I (x - ex)i fb (x - t)P-l
g(x) = i~ - i! gli)(ex)+ a (p-l)! 0(ex,t,X)g'P)(t)dt

= Ppg(x) + (I - Pp) g(x),

where

(3.2)

if ex:S;; t < x,
if x:S;; t < ex,
otherwise.

Likewise for q ~ 1 and f3 an arbitrary point in [c, d] let Qj be the linear
projection on Flq)[C, d] defined by

Qil = h(j)(f3) (y ~ (3)j (3.3)
J.

Then (1j = Li<j Qi is also a linear projection,j = 0, 1,2,.... For all functions
hE F(q)[c, d] we have the Taylor series representation

hey) = qf (y ~ (3)i h(j)«(3) + ( (y - u)q-1 p«(3, u, y) hlq)(u) du
j~O J. 'C (q-l)!

(3.4)
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Let D be the rectangle [a, b] X [c, d]o We now wish to construct a Taylor
series expansion for real-valued functions defined on D. We initially assume
that fEFlm)[a, b] ®Flm)[c, d], where III = P + q. We expand the identity
operator as follows:

I = I ® I = I'P ® {lq + I'P ® (I - (lq) + (I - I'p) ® {lq

+ (I - I'p) ® (I - (lq)

= L: L: Pi ® Qj + L: Pi ® (I - (lq) + (1 - I'p) ® L:
(3.4)

Qj
i<p

We can write (I - (lq) as (I - (lm-i) + Lq";;j<m-i Qj . Likewise

(1 - I'p) = (1 - Pm-j) + L: Pi .
p<i<m-}

Therefore,

L: Pi ® (I - (lq) = L: L: Pi ® Qj + L: [Pi ® (1 - (lm-i)],
i<p i<p q.:s;;i<m-i i<p

and

(I - 1\,) ® L: Qj = L: L: Pi ® Qj + L: [(1 - Pm-i) ® Qj].
i<q i<q p";;i<m-i i<q

Thus

I = L: Pi ® Qj + L: [(I - Pm-j) ® Qj] + L: [Pi ® (I - (lm-i)]
i+j<m i<q i<p

(3.5)

This implies that f (x, y) E F(m) [a, b] ® F(m) [c, d] has the representation

f(x,y) = L:
i+j<m

(x - a:)i (y - (3)i
o! o! /;jDi, (3)
I. J.

q-l (y - (3)i fb (x - t )m-i-1+ L: Of (_ • _ 1) , f(Di, t, x)fm-jjt, ;3) dt
j~O J. a m J .

p-l (X - Di)i fa (y - u)m-i-l+t:o i! c (m - i-I)! f([3, u, Y)/;.m_;(Di, u) du

f
b fd (x - t)1J-l (y - U)q-l+ a c (p _ ijf (q - I)! f(Di, t, x) f«(3, u, y)fp,it , u) dt du,
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where we use the notation fi,j to denote partial derivatives. This is just the
representation obtained by Sard [21, p. 163].

(3.5) gives a decomposition of Flm)[a, b] o FUn)[c, d] into a direct sum of
subspaces,

U,J)* = rr [jp,q(x, y)]2 dx dy + I r [fm-i,,{X, ,8)]2 dx
"a C J<q'"'(l

.d

+ I , [f;,m-i(ex, y)]2 dy + I [/,:,;(0., ,8)]2 (3,7)
i<p .. C i+j<m

= [j,n + I [fuCOl , ,8)F
i+i <rtf·

is an inner product on Flm)[a, b] 0 F1m)[c, d]. We note that [f,J] is a semi
norm with null-space f2 equal to the set of polynomials of degree less than
or equal to m - 1. The dimension of f2 is k = m(m + 1)/2.

It can easily be seen thatpm)[a, b] 0pm)[c, d] is not the largest class offul1c
tions for which (3.6) holds, Equivalently, Flm)[a, b] 0 pm)[c, dJ is not complete
under this norm. We complete this space by completing each subspace. The
completion of (I - Fm- i ) pm) [a, b] is (I - Fm_;) pm-il[a, b],j = 0",., q - 1,
and the completion of (I - iJm-i) pm)[c, d] is (J - Qm-;) F1m-i)[c, d], i =
0, ... , P - 1. This makes all of the tensor product spaces in the summations
complete. We claim that the completion of (I - Fp ) FlP)[a, b] @
(I - iJq) .pq)[c, d] is the set X of all functions with the property that

fi,j(x, y) E C[D], i < p, j < q,

fp-l.q-l (x, y) is abs cont,fp,q E F[D]

Ppf= iJJ= 0.

(For a definition of absolute continuity as applied to functions of 1'.:;;0

variables see Sard [21, p. 534].) To prove this let {ilL} be a Cauchy sequence
in X. Then {f~.q} is a Cauchy sequence in L2[D] which converges to an element
e E P[D]. We must show that there exists an elementfE X with the property
fp,q = e.

Let
_ f""Y (x - t)P-l (J' - u)a-l t

f - J ( _ 1)' (_ pI e(., u) dt du.
a fJ P . q J.

Thenfp,q = e. We now show thatfE X. There exist constants AI, N such that

I
(x - t)J,-l-i I .
(p _ 1 - i)! < M,

I
(y - U)q-l-i I
(q _ 1 _ j)! < N,

o ~ i ~ P - 1,

O~j~q-1.
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Since e E P[D], there exists a sequence {e"} of continuous functions defined
on D such that

II e - ef' 110 -* 0 as /L -* 00.

We let

J
'" fY (x - t)P-l (y - U)q-l

sf' = ~ 13 (p _ 1)! (q _ 1)1 e"(t, u) dt du, /L = 1,2,....

Then for i <p,j < q

IfiAx, y) - sijx, y)1

-If" fY (x - t)V-l-i (y - U)q-l-i - _ f' . I
- " 13 (p - 1 - i)! (q _ 1 _ j)! [e(t, u) e (t, u)] dt du

(r'" fY I (x - t)P-l-i (y - U)a-l-i 12 )1/2
~ ( _ 1 _ ')' ( _ 1 _ ')' dt du II e - e"I!L2

·~S p l.q J.I

~ (b - a)(d - e) MNII e - e"IIL' -* 0

(3.9)
fi,m-i-l(rx, y) abs cont, fi,m-;{rx, y) E Pre, d], i = 0,... , P - 1,

fp-l,q-l(X, y) abs cont,fp,q E P[D].

uniformly as /L -* 00. Therefore fi,j, i < p,j < q, are continuous since
they are the uniform limits of continuous functions. The function
flJ-1,q-l(X, y) = J: J; e(t, u) dt du is absolutely continuous since fp,q{x, y) =

e(x,y) is in P[D] and thus is defined a.e. and is integrable on D. Clearly
f satisfies the last property in (3.8). Thus we have a space which is the direct
sum of complete spaces and therefore is complete. We call this space
TM(rx, fJ). It has the properties

fi,; E C[D], i <p,j < q,

fm-i-l,ix, fJ) abs cont,/,,,_j,j(x, fJ) E pea, b],j = 0,... , q - 1,

Since the derivatives f'P+iAx, y), i = 0,... , q - j,j = 0,... , q - 1, need only
exist along the line y = fJ, all partials with respect to y must be taken before
any partials with respect to x of order greater than p are taken. A similar
condition holds for fi,q+;{x, y), j = 0,... , p - i, i = 0,... ,P - 1.

We now construct the reproducing kernel for Tp,q(rx, fJ) with norm (3.7).
Let G1 , ... , Gk , be the functionals defined by

G/1) = fijrx, fJ), /L = 1,... , k,

and let ql ,... , q" be elements of f with the property

G;{q;) = Oi;, 1 ~ i,j ~ k.
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Note that the ql ,... , ql.; are just the functions (x -x)ijil (y - f3Y/jl, i + j < m.
We also let X be the point (x, y) and let Y = (g, 'Y).

THEOREM 1. The reproducing kernel K*(X, Y) for the space p.'l(CI.,,8)
tl'ith norm given by (3.7) is

where

\ (x g)2P--l
B2P-l(X g) = (-l)P, ".-0-'---='-'-c--c-

, . I (2p - I)!

p-l (Ol _ g)~-l-i (x - a:)i

i~ [(2P-1-i)! i!

+ (-l)i (x - Ol)~)-H (g -/'1 ,:xY]1
(2p - 1 - i)1 \

and B2Q-l(y, Tj) is defined similarly.

Proof The proof is based on the fact that TP.'l(CI., (3) is the direct sum of
tensor products of single-variable spaces for which the reproducing kernels
are known. Let K;(X, Y) be the reproducing kernel of the i-th element in the
direct sum. Then (f, Li K,)(y) = Li(fi, Ki)i(Yj = l:.d;(X) = f(X), where/; is
the projection of f onto the i-th subspace. Thus K*(X, Y) = Li Ki(X, Y).
Each subspace is the tensor product of two single-variable spaces. It can easily
be seen that the norms on each of these subspaces have the property that
(f, g)i = «(f, gl);', g2);, where g is the product of elements gl and g2 in the
component spaces and the primes are used to indicate the inner products on
these spaces. Thus each K;(X, Y) is the product of the reproducing kernels
on the respective single-variable spaces.

de Boor and Lynch [12] have calculated the reproducing kernel for the
space p!P)[a, b] with norm given by

It is

p-l .b

(f,j) = I [f(i)(0l)]2 + J [j!P)(x)]2 dx.
i=O a

(3.11 )

p-l (x - Ol)i (g - aY J.b
i~ i!' i! + a gP(X, t) gP(g, t) dt, (3.12)

where gP(x, t) = (x - t)P-l/(p - I)! !f(0l, t, x).
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K*(X, Y)

= ±qi(X) qi(Y) +I (y ~ (3)i (7] ----:-, (3)i
i~1 j~O J. .1.

f gm-i(x, t) gm-i(g, t) dt
a.

+ [f gP(x,t)gP(g,t)dt][f gq(y,u)gq(7],u)du].
a C

(3.13)

Evaluation of the integrals in (3.13) gives (3.10), which concludes the proof.

4. CONSTRUCTION OF THE REPRODUCING KERNEL FOR THE HILBERT SPACE H

In de Boor and Lynch [12] it was shown that the optimal approximation
F(f) to F at I is exact for the n-dimensional subspace spanned by the
representers of the Fi , i = 1,... , n. We would like to have this approximation
also be exact for functions in !t, i.e., polynomials of degree less than or equal
to 111 - 1. We do this by considering a norm similar to (3.7) but involving
the approximating functionals F1 , ••• , Fn , rather than the Gi , i = 1,... , k.
This will force !t to be contained in the subspace S = <ef11 ,... , ef1n> where ef1i
is the representer of Fi , i = 1, , n.

We shall assume that F, F1 , , Fn are linearly independent and are of the
form

LI = .2: fJli.ix, y) dfLi,i(x, y)
«P
i<a

+..L Jfi.lx, (3) dfLi,i(X) + .L fii.ky., y) dfLi.i(y)
~+J<m z+J<m
i~p i>Q

(4.1)

where the functions fLi.i are of bounded variation. We also assume that the
functionals F1 , ... , F n , have the property that there exists a set of weights
Ai, i = 1,... , n such that F(f) - I:;~1 AiFl!) = 0 for all IE!t, the null
space of [f, f]. Let F1 , ... , Fl be a subset of the Fi which is maximally linearly
independent over !t. If I = k, then

h;

(f,j) = L [FdF + [f,j]
i~1

(4.2)
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defines a norm on Tp,q(rx, [3). If 1< k, then there exists a subspace Voof dimen
sion k - I with the property that Fl(f) = ... = Fn(f) = 0 for allfin Vo ' By
our assumption, F(f) = 0 for allfE Vo . Let epl ,... , !Pk-l be k - I of the func
tionals Gi , i = 1,... , k, chosen so that F1 , ••• , FI , (/)1 , .. " cfJk _ l , are linearly
independent over .fi2. Let P be the linear projection defined by

k-l

PfeX) = I ep;(f) plX),
i~l

where PI"'" Pk-l are elements of Vo with the property that

Note that the Pi are a subset of the qi' i = 1,... , k. Our approximation
problem is not affected if we consider the problem on H = (I - P) TP.Q(rx, [3).
H is a Hilbert space with respect to the norm

I

(j,j) = [f,j] + I [FJf)J2.
i=l

(4.3)

In many applications it will happen that k = I. As an example of when this
is not the case consider P,3(0,0) with n = 7, F(j) = J~l f~d(x, y) dx dy,
Flf) = j(Xi ,Yi), i = 1,... , 7, where the (Xi, YtJ are the points of the Radon
7-point, fifth-degree cubature formula. (See Stroud [31].) [n this case k = 21.
This formula is exact for all elements in .fi2, the set of polynomials of degree
less than or equal to five, and thus we can construct a Hilbert space in the
manner described above.

We now construct the reproducing kernel function for the Hilbert Space H.
Let

k-l

P(x)P(Y)K*(X, Y) = Kr*(X, Y) = I Pi(X)piCY),
i=l

and

k-l

(I - P)(X) (I - P\n Kl *(X, Y) = leX, Y) = K*(X, Y) - I Pi(Ji) Pie Y).
i=l (4.4)

Let f E P,Q( rx, [3). Then

(I - P)f(Y) = (j, K*(X, Y) - Kl*(X, Y» 'i< = (j,]) = (j,])*

k-l

- I epiCf) epiC!).
i~l

Therefore we have shown
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LEMMA 1. The reproducing kernel function for the Hilbert space H with
norm given by

k

(J,j) = [f'/] + L [GJJ2
i~l

isl(X, Y).

Let P be the projection operator from H onto (I - P)f2 defined by

l

Pf(X) = L F;(J) ~;(X)
i=l

where the ~i; i = 1,... , I are defined by ~i E (I - P)f2 and

1 ~ i,j ~ I.

THEOREM 2. The reproducing kernel K(X, Y) for the Hilbert space H
with norm given by (4.3) is

l

(I - P)x (I - p)yl(X, Y) + L ~i(X) ~i(Y)'
i~l

Proof Let v E H.

l

Pv(Y) = (v, L ~,(X) ~i(Y»)'
.~1

We now must show that

(I - P)v (Y) = (v, (I - Ph (I - P)yj(X, Y)x.

(v, (I - Ph (I - PhleX, Y)h = [v, (I - Ph (I - Phlex, Y)lx

= [v, (I - P)yj(X, Y)]

= (I - Ph [v,j(X, Y)],

where the interchange of integration and the operator P is justified by Sard's
kernel theorem [21, p. 175]. But [v,j(X, Y)]x = (I - Fhv(Y) where F is
the projection from H onto (I - P)f2 defined by

k

Ff(X) = L G;(f) qi(X)
i~l

Then (I - Ph (I - F)yv = (I - Phv, which completes the proof.



OPTIMAL APPROXIMATION 87

Remark 1. The proof of the preceding theorem is largely independent of
the particular Hilbert space X. It in fact holds for any real Hilbert space :Yt
whose norm is obtained by adding a finite sum of squares of linear functionaIs
to a semi-norm [".] with a finite dimensional null space 'Y) of dimension l.
Assume that the reproducing kernel K*(X, Y) can be found for a particular
norm

I

(v, v)* = [v, v] + L [G;V]2.
i=l

where G1 , ... , Gl , are any set of "sufficiently smooth" linear functionals,
i.e., functionals which are bounded and for which the identity

(G;h [v, K*(X, Y)](xl = [v, (G,h K*(X, Y)j(X)

holds, which are linearly independent over 7). Let L 1 , ••• , L! be any other set
of "sufficiently smooth" linear functionals which are also linearly independent
over 'Y) and let J5 be the projection operator from £ onto 'YJ defined by

I

Pv = ~ Lvg·L (.1.'

i~l

where q1 ,..., q! are elements of'Y) with the property

I ~ i,j ~ I.

Then proceeding in the same way as in the proof of Theorem 2, it can be
shown that the reproducing kernel for X with norm given by

1

(D, D) = [D, v] + L [L iv]2
i=l

IS

1

K(X, Y) = (I - PYx (1 - P)y K*(X, Y) + L qt(X) q,(Y).
i~l

Remark 2. The functions rPi' i = 1,... , I, in the reproducing kernel
K(X, Y) are the representers of the functionals F1 , ... , F l • To see this let v E H.
Then

I

(D, rPi) = [v, rP;] + L Fk) F;(rPi) = Flv).
;=1

Thus the optimal approximation P is exact for functions in (I - P)f:2. Since
F is obviously exact for functions in Vo , it is exact for all functions in !2.
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5. ApPLICATION TO CUBATURE

In this section we apply the results of the preceding section to obtain formu
las for the optimal approximation and error bounds for the approximation of
the functional F(f) = S: S: f(x. y) dx dy by a cubature sum L~=l AiFi(f) =
L~=l A;/(Xi' Yi)' We shaH also assume that the maximal number of the
functionals Fi • i = I,... , n which are linearly independent over fl, the set of
polynomials of degree less than or equal to m 1, is k. the dimension of i2.
For this case the reproducing kernel is

k

K(X. Y) = J - L (l(Xi , Y) 4>i(X)
i=l

k k

+ L L J(Xi , Xj) 4>lX) 4>lY).
i=1 j=1

Xi = (Xi. Yi)' (5.1)

Since u is a linear combination of the representers 4>i , i = 1•...• n, we find
that uhas the form

n

ii(x, y) = p(x. Y) L A,.f(X, Xi)
i=1

p(x, Y) E i2. (5.2)

Ifthe set of interpolation points includes the point (ex, fl), (5.2) becomes

n

u(x. Y) = p(x. Y) + L A;J(X, Xi),
i=1

i-=l-=IJ

(5.3)

where XI' = (ex, fl). This simplification results from the fact that 82P- 1(X, ex) =
82q

-
1(y, fl) = 0 and thus J(X. XI') == O. We first assume that (ex, fl) is not one

of the interpolation points. We shall determine the 11 + k coefficients in (5.2)
by solving a linear system of equations. We obtain 11 of these equations from
the interpolation conditions. We obtain the remaining equations from the
fact that ii -.l v for all v E ff {v E H IFi(v) 0, i = 1,... , n}. In Lemma 2
we proved that J has the property that for any v E H

k

[J, v]x = vet, 7]) - L Glv) GlJ)
i=l
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This implies that for all functions v E :F

(f- ') (C) "(-l)i+j (ex - g)i ([3 -7])i V' .(Ui a') .
. ,v x = V s, 'YJ - L. i! .,'! '.J. ,I-'

i+i<m

Thus

n n

(u, v) = «p(x, Y) + L AzJ(X, Xz», v) = L Az(.l(X, Xl), v)
Z~l l~l

89

n

= L AIV(XZ , J'z)
Z=l

_ " (-l)i+j V ..(ex (.1) ~ A (Ci - Xz); ([3 - y,)j = 0
L. '.J ,I-' 1... I., " .

i+j<m Z=l 1. J.

(5.4)

Since v E:F, the first sum in (5.4) is zero. The second sum will be zero for
all v E :F if and only if

n

L Az(ex - xz)i ([3 - J'z)j = 0
1~1

i +1 < m. (5.5)

These n + k equations are linearly independent since the only function
which satisfies both (5.5) and the homogeneous interpolatory conditions
is the zero function.

We determine the 11 + k - 1 coefficients in (5.3) in the same way. We
obtain 11 of the equations from the interpolatory conditions. Instead of (5.4)
we obtain

If (ex, [3) is one of the interpolation points, v(ex, (3) = 0 since v EO:F. Thus (5.6)
will be zero for all v E ff" if and only if

n

L Alex - xzY (f3 - J'z)i = 0
Z~l

ZoftlJ.

o<i+J <m. (5.7)
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Thus (5.7) provides the remaining k - 1 equations to determine the coeffi
cients of (5.3).

It would be desirable to find other representations for certain configurations
of points since the systems of equations we have obtained are ill-conditioned
and therefore their use may result in inaccurate results if n is very large. The
use of the representations (5.2) and (5.3), however, does not require that the
representers if;1 ,..., if;l , be explicitly known. In most cases it appears that these
functions would be quite difficult to find.

The function .p(x, y) equals RAK(X, Y». We recall that R = F - L:~=1 AiFi ,
where the Ai are the optimal weights. Also R(v) = 0 for all v E 2. Therefore

l,;

.p(x, y) = R y1- R y (~ if;lX)J(Xi , Y»)
.~1

n

= F y1- L Ad(X, Xi) - q(x, y),
i=1

(5.8)

where q(x, y) E 2. If(ex, fJ) is one of the interpolation points, say XI' , we obtain

n

.p(x, y) = FyJ - L AJ(X, Xi) - q(x, y).
i=1

i9"1'

(5.9)

We shall determine the n + k coefficients of (5.8), the Ai, i = 1,... , n, and
the k coefficients of the polynomial q(x, y), by solving a linear system of
equations. We obtain 11 of these equations from the fact that .p E fl'. Thus

i = 1,... ,n. (5.10)

We get the remaining equations from the fact that R(v) = 0 for all v Efland
thus R((ex - x)i (fJ - y)i) =;= 0, i +1 < 111. This implies that

n

L A1(ex - Xl)i (fJ - Yl)i
1~1

= '(ex - a)i+1 - (ex - b)i+1 )( (fJ - c)i+l - (fJ - d)i+l )
{i+l 1+1.

If (ex, fJ) is one of the interpolation points, we replace (5.11) by

..
L Al(ex - XIY (fJ - Yl)i
1=1
1*1'

i +1 < m.
(5.11)

= ((ex - a)i+1 - (ex - b)i+1 )( (fJ - c)H1 - (fJ - dy+l )
i+l 1+1°< i + j < m. (5.12)
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Eqs. (5.10) and (5.11), and (5.10) and (5.12) are linearly independent
since the corresponding coefficient matrices are the same as those used to
find the coefficients in the formula for u.

The calculation of Fy(J) = f~ tel(X, Y) dg dn is straightforward.

n

F(ii) = L: A;f(Xi , y;).
i~l

(5.13)

If(o:, f1) is not one of the interpolation points, all of the weights, A, i = 1,... , n,
were obtained in the calculation of;P. If (IX, f1) = X,. , one of the interpolation
points, all of the weights except A,. were obtained in the calculation of ¢.
AI' can be determined from the fact that RO) = O. Thus

n

L Al = (b - a)(d - e),
1~1

or

"A,. = (b - a)(d - c) - L Al .
1=1
l=t=g

(5.14)

The calculation of F(;P) = f: f: ;P(x, y) dx dy is straightforward. Assume
II f II = rand [J,n = M2. Since the function it has the property that
Fi(ii) = FiU), i = 1,... , n, we can rewrite the hypercircle inequality (2.1) to
get

IFU) - F(u)1 ~ II R II [M2 - [ii, ii]].lj2

If (0:, f1) is not one of the interpolation points,

[ii, it] = [ii, (p(x, y) + f. A;/(X, Xi»)] = [ii, f. A]eX, Xi)]
,~1 "~1

n

= L AiU(Xi' Yi)
;=1

n n

= L Aii/(X;, J'i) = L A,f(Xi' Y,)
i=l 'i=l

(5.15)

(5.16)



92 MANSFIELD

using (5.5). If (a, (3) = XI' , one of the interpolation points, instead of (5. 16),
we obtain

n n

[ii, uJ L A;/(Xi, Yi) - I(a, (3) L Ai'
i=l i=l
i#~ i¥~

(5.17)

The function ucan be considered to be a bivariate spline function in that
it minimizes a pseudo-norm, namely, [', .J, subject to the constraint that it
interpolate the function .f at the points Xi' i = I,..., n. ii is a piecewise
polynomial function of degree 2m 1. If the point (a, (3) is in the interior
of the rectangle D, all partial derivatives of order p in x have a jump at the
line x = a, and all partial derivatives of order q in Y have a jump at the line
Y = f3. Regardless of where the point (a, (3) is in the rectangle D, the partial
derivatives of order 2p - 1 in x have jumps at the lines x = Xi' i I,... , n,
and the partial derivatives of order 2q - 1 in Y have jumps at the lines
Y Yt, i= I, ...,n.

6. NUMERICAL EXAMPLES

In this section we give several examples related to approximate multiple
integration on a rectangle. We choose as the functional F(f) to be approxi
mated, the integral J~l f~l dy dx/x +Y + 4. Since I(x, y) = I/(x + y + 4)
is infinitely differentiable on D = [-1, 1J X [-1, IJ, it is a member of
TM(a, (3) for all p and q and all (a, (3) in D. We choose several values of p
and q and two different points (ct, (3) and compute the corresponding optimal
approximations and error bounds. We use the two sets of points

£1 = {CO, 0), (1, 1), (-1, 1), (1, - I), (-1, I)},

and

£2 = {(O, 0), (-1,0), (1,0), (-1/2, 1/2), (1/2, 1/2), (1/2, - 1/2),

(-1/2, -1/2), (-1, -1), (0, -1), (1, -1), (-1,1), (0, 1), (I, l)}.

In the first example we consider I(x, y) to be a member of the class of
functions Tl.1(rx, (3) in the Hilbert space H. We carry out the calculations for
two different points (a, (3). In each case (a, (3) is one of the points of the
cubature sum. Therefore to calculate u we use the equations ii(xt, Yt) =
I(xt ,Yi), i = 1,..., n, and (5.7). To calculate if> we use equatious (5.10) and
(5.12). We solve the linear systems of equations by inversion of the coefficient
matrices using a maximal pivot method. Since the coefficient matrices for
the calculation of both it and 1J are the same, only one matrix inversion is
necessary.
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TABLE 1

(IX, (3) = (0,0)

Set of points £, E2

F(u) 0.105357(01) 0.104628(01)
[[R[[2 0.280159 0.120729
M2 0.171642(-01) 0,171642(-01)

[II, a] 0.992063(-02) 0.1 37910(-01)

B 0.450482(-01) 0.201802(-01)

F(!) - F(u) -0.707544(-02) O.22043!( -03)

TABLE 2

(IX,f3) = (1,1)

Set of points £, £2

F(a) 0.108654(01) 0.105251(01)

[!R[[' 0.123803(01) 0.238149
j'v[2 0.124486(-01) 0.1 24486(-01)

[u. u] 0.854701 (-02) O.107326(-01)

B 0.695000(-01) 0.202149(-01)

F(fl- F(u) -OA00425(-01) -O.E01050(-02)

To calculate the optimal approximation, F(u), we use Eq. (5.13) where
the weights Ai are obtained as coefficients in the formula for ~ (5.9). To
calculate Ii R II, the function-independent part of the error bound

IFU) - F(u)1 ~ II R Ii [M2 - [ii, U]]1/2,

we integrate {>. In practice the calculation of111[2, the square of the pseudonorm
[f,f], is quite difficult. An upper bound for M2 can always be found, however,
by replacing each integral by the product of the maximum of the square of
the appropriate derivative times the measure of the domain of integration.
The pseudo-norm [it, u] is calculated by (5.17) where the '\ are coefficients
in the formula for u. Table I lists the optimal approximation and error
bounds obtained when we let (ex, f3) = (0,0). Table 2 lists the optimal
approximation and error bounds when (ex, f3) = (1, 1). The numbers in
parentheses indicate the exponents and B denotes the error bound,
II R Ii [M2 - [ii, U]]1/2.
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Set of points

F(it)

IIRII'
M'
[it, it]

B

F(f) - F(it)

Set of points

F(it)

IIR[[2

M2

[it, it]

B

F(f) - F(ii)

MANSFIELD

TABLE 3

(0<, fi) = (0, 0)

E,

0.104190(01)

0.284981(-02)

0.420252(-01)

0.122915(-01)

0.920517(-02)

0.459631(-02)

TABLE 4

(0<, f3) = (1, 1)

E,

0.104731(01)

0.106450(-02)

0.293879(-01)

0.359353(-02)

0.524005(-02)

-0.810142(-03)

In the second example we consider f(x, y) = l/(x + y + 4) to be a member
of P,2(ex, (3). Table 3 lists the optimal approximation and error bounds
obtained when (ex, (3) = (0,0). Table 4 lists the optimal approximation and
error bounds when (ex, (3) = (1. 1).

All of the preceding calculations were carried out in double precision
floating point arithmetic on the Univac 1108 Computer at the University
of Utah Computer Center.

Much of the work on error analysis of cubature formulas has dealt with
cross-product formulas in contrast to the results of this paper. References
can be found in Stroud and Secrest [32]. If two single variable formulas are
used, one of which is exact for polynomials of degree ~ p - 1, and the other
is exact for polynomials of degree ~ q - 1, the cross-product formula
obtained from them is exact for polynomials in two variables of degree less
than or equal to p - I in one variable and less than or equal to q - I in
the other, Thus the optimal cubature formulas discussed in this paper differ
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from cross-product formulas even if a cross-product set of points is used
since the optimal formulas are exact for all polynomials of total degree less
than or equal to m - 1, where 111 = P + q.
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